Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Chem Commun (Camb) ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639641

RESUMO

Magnetic responsive ionic liquid (MIL) demonstrated an advanced photomobility in confined narrow spaces through the doping of photoresponsive azobenzene by the interplay of supramolecular π-cations. Moreover, reversible physisorption/desorption of CO2 was achieved based on the photocontrolled solid-liquid transitions of the mixtures. Our approach opens opportunities to obtain multi-stimuli response through the coordinated supramolecular interplay of each responsive component.

2.
Talanta ; 274: 126004, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564824

RESUMO

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.

3.
Cell Prolif ; : e13631, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453465

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiac organoids (COs) have shown great potential in modelling human heart development and cardiovascular diseases, a leading cause of global death. However, several limitations such as low reproducibility, limited vascularization and difficulty in formation of cardiac chamber were yet to be overcome. We established a new method for robust generation of COs, via combination of methodologies of hiPSC-derived vascular spheres and directly differentiated cardiomyocytes from hiPSCs, and investigated the potential application of human COs in cardiac injury modelling and drug evaluation. The human COs we built displayed a vascularized and chamber-like structure, and hence were named vaschamcardioids (vcCOs). These vcCOs exhibited approximately 90% spontaneous beating ratio. Single-cell transcriptomics identified a total of six cell types in the vcCOs, including cardiomyocytes, cardiac precursor cells, endothelial cells, fibroblasts, etc. We successfully recaptured the processes of cardiac injury and fibrosis in vivo on vcCOs, and showed that the FDA-approved medication captopril significantly attenuated cardiac injury-induced fibrosis and functional disorders. In addition, the human vcCOs exhibited an obvious drug toxicity reaction to doxorubicin in a dose-dependent manner. We developed a three-step method for robust generation of chamber-like and vascularized complex vcCOs, and our data suggested that vcCOs might become a useful model for understanding pathophysiological mechanisms of cardiovascular diseases, developing intervention strategies and screening drugs.

4.
IEEE Trans Vis Comput Graph ; 30(5): 2538-2548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437076

RESUMO

Stylized avatars are common virtual representations used in VR to support interaction and communication between remote collaborators. However, explicit expressions are notoriously difficult to create, mainly because most current methods rely on geometric markers and features modeled for human faces, not stylized avatar faces. To cope with the challenge of emotional and expressive generating talking avatars, we build the Emotional Talking Avatar Dataset which is a talking-face video corpus featuring 6 different stylized characters talking with 7 different emotions. Together with the dataset, we also release an emotional talking avatar generation method which enables the manipulation of emotion. We validated the effectiveness of our dataset and our method in generating audio based puppetry examples, including comparisons to state-of-the-art techniques and a user study. Finally, various applications of this method are discussed in the context of animating avatars in VR.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38393838

RESUMO

In recent years, data-driven soft sensor modeling methods have been widely used in industrial production, chemistry, and biochemical. In industrial processes, the sampling rates of quality variables are always lower than those of process variables. Meanwhile, the sampling rates among quality variables are also different. However, few multi-input multi-output (MIMO) sensors take this temporal factor into consideration. To solve this problem, a deep-learning (DL) model based on a multitemporal channels convolutional neural network (MC-CNN) is proposed. In the MC-CNN, the network consists of two parts: the shared network used to extract the temporal feature and the parallel prediction network used to predict each quality variable. The modified BP algorithm makes the blank values generated at unsampled moments not participate in the backpropagation (BP) process during training. By predicting multiple quality variables of two industrial cases, the effectiveness of the proposed method is verified.

6.
Small ; : e2310186, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059820

RESUMO

Developing electrolytes combining solid-like instinct stability and liquid-like conducting performance will be satisfactory for efficient and durable Li-ion batteries. Herein lamellar lyotropic liquid crystals (LLCs) demonstrate high-voltage windows, efficient charge transport, and inherent thermal safety as solid-state electrolytes in lithium-ion batteries. Lamellar LLCs are simply prepared by nanosegregation of [C16 Mim][BF4 ] and LiBF4 /Propylene carbonate (PC) liquid solutions, which induce lamellar assembly of the liquids as dynamic conducting pathways. Broadened liquid conducting pathways will boost the conducting performance of the LLC electrolytes. The lyotropic lamellar nanostructures enable liquid-like ion conductivity of the LLC electrolytes at ambient temperatures, as well as provide solid-like stability for the electrolytes to resist high voltage and flammability overwhelming to LiBF4 /PC liquid electrolytes. Despite minor consumption of PC solvents (34.5 wt.%), the lamellar electrolytes show energy conversion efficiency comparable to the liquid electrolytes (PC wt. 92.8%) in Li/LiFePO4 batteries under ambient temperatures even at a 2 C current density, and exhibit attractively robust stability after 200th cyclic charge/discharge even under 60 °C. The work demonstrates LLC electrolytes have great potential to supersede traditional liquid electrolytes for efficient and durable Lithium-ion (Li-ion) batteries.

7.
Food Funct ; 14(23): 10443-10458, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37916301

RESUMO

Individuals with rotating and night shift work are highly susceptible to developing metabolic disorders such as obesity and diabetes. This is primarily attributed to disruptions in the circadian rhythms caused by activities and irregular eating habits. Time-restricted feeding (tRF) limits the daily eating schedules and has been demonstrated to markedly improve several metabolic disorders. Although an intricate relationship exists between tRF and circadian rhythms, the underlying specific mechanism remains elusive. We used a sleep disruption device for activity interference and established a model of circadian rhythm disorder in mice with different genetic backgrounds. We found that circadian rhythm disruption led to abnormal hormone secretion in the gut and elevated insulin resistance. tRF improved metabolic abnormalities caused by circadian rhythm disruption, primarily by restoring the gut hormone secretion rhythm and activating brown fat thermogenesis. The crucial function of brown fat in tRF was confirmed using a mouse model with brown fat removal. We demonstrated that chenodeoxycholic acid (CDCA) effectively improved circadian rhythm disruption-induced metabolic disorders by restoring brown fat activation. Our findings demonstrate the potential benefits of CDCA in reversing metabolic disadvantages associated with irregular circadian rhythms.


Assuntos
Tecido Adiposo Marrom , Doenças Metabólicas , Humanos , Comportamento Alimentar/fisiologia , Obesidade , Ritmo Circadiano , Hormônios
8.
ACS Nano ; 17(22): 23194-23206, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37926964

RESUMO

Design of admirable conductive hydrogels combining robust toughness, soft flexibility, desirable conductivity, and freezing resistance remains daunting challenges for meeting the customized and critical demands of flexible and wearable electronics. Herein, a promising and facile strategy to prepare hydrogels tailored to these anticipated demands is proposed, which is prepared in one step by homogeneous cross-linking of acrylamide using hydrophobic divinylbenzene stabilized by micelles under saturated high-saline solutions. The influence of high-saline environments on the hydrogel topology and mechanical performance is investigated. The high-saline environments suppress the size of hydrophobic cross-linkers in micelles during hydrogel polymerization, which weaken the dynamic hydrophobic associations to soften the hydrogels. Nevertheless, the homogeneous cross-linked networks ensure antifracture during ultralarge deformations. The obtained hydrogels show special mechanical performance combining extremely soft deformability and antifracture features (Young's modulus, 5 kPa; stretchability, 10200%; toughness, 134 kJ m-2; and excellent anticrack propagation). The saturated-saline environments also endow the hydrogels with desirable ion conductivity (106 mS cm-1) and freezing resistance (<20 °C). These comprehensive properties of the obtained hydrogels are quite suitable for flexible electronic applications, which is demonstrated by the high sensitivity and durability of the derived strain sensors.

9.
ACS Sens ; 8(11): 4020-4030, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37917801

RESUMO

Salicylic acid (SA) is one of the chemical molecules, involved in plant growth and immunity, thereby contributing to the control of pests and pathogens, and even applied in fruit and vegetable preservation. However, only a few tools have ever been designed or executed to understand the physiological processes induced by SA or its function in plant immunity and residue detection in food. Hence, three Rh6G-based fluorogenic chemosensors were synthesized to detect phytohormone SA based on the "OFF-ON" mechanism. The probes showed high selectivity, ultrafast response time (<60 s), and nanomolar detection limit for SA. Moreover, the probe possessed outstanding profiling that can be successfully used for SA imaging of callus and plants. Furthermore, the fluorescence pattern indicated that SA could occur in the distal transport in plants. These remarkable results contribute to improving our understanding of the multiple physiological and pathological processes involved in SA for plant disease diagnosis and for the development of immune activators. In addition, SA detection in some agricultural products used probes to extend the practical application because its use is prohibited in some countries and is harmful to SA-sensitized persons. Interestingly, the as-obtained test paper displayed that SA could be imaged by ultraviolet (UV) and was directly visible to the naked eye. Given the above outcomes, these probes could be used to monitor SA in vitro and in vivo, including, but not limited to, plant biology, food residue detection, and sewage detection.


Assuntos
Reguladores de Crescimento de Plantas , Ácido Salicílico , Ácido Salicílico/química , Ácido Salicílico/farmacologia , Reguladores de Crescimento de Plantas/química
10.
Opt Express ; 31(18): 29491-29503, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710748

RESUMO

We demonstrate a scheme to realize high-efficiency entanglement of two microwave fields in a dual opto-magnomechanical system. The magnon mode simultaneously couples with the microwave cavity mode and phonon mode via magnetic dipole interaction and magnetostrictive interaction, respectively. Meanwhile, the phonon mode couples with the optical cavity mode via radiation pressure. Each magnon mode and optical cavity mode adopts a strong red detuning driving field to activate the beam splitter interaction. Therefore, the entangled state generated by the injected two-mode squeezed light in optical cavities can be eventually transferred into two microwave cavities. A stationary entanglement E a 1 a 2 =0.54 is obtained when the input two-mode squeezed optical field has a squeezing parameter r = 1. The entanglement E a 1 a 2 increases as the squeezing parameter r increases, and it shows the flexible tunability of the system. Meanwhile, the entanglement survives up to an environmental temperature about 385 mK, which shows high robustness of the scheme. The proposed scheme provides a new mechanism to generate entangled microwave fields via magnons, which enables the degree of the prepared microwave entanglement to a more massive scale. Our result is useful for applications which require high entanglement of microwave fields like quantum radar, quantum navigation, quantum teleportation, quantum wireless fidelity (Wi-Fi) network, etc.

11.
ACS Appl Mater Interfaces ; 15(37): 44469-44481, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37676918

RESUMO

Controlling ion desolvation, transport, and charge transfer at the electrode-electrolyte interface (EEI) is critical to enable the rational design of the efficient and selective separation of targeted heavy metals and the decontamination of industrial wastewater. The main challenge is to sufficiently resolve and interrogate the desolvation of solvated metal ions and their subsequent electroreduction at the EEI and establish pathways to modulate these intermediate steps to achieve efficient energy transfer for targeted reactive separations. Herein, we obtained a predictive understanding of modulating the desolvation and electrosorption of Pb2+ cations using the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium chloride (EMIMCl) in aqueous electrolyte. We revealed the formation of a compact interphase layer consisting of EMIMCl-Pb complexes under an applied electric field using operando electrochemical Raman spectroscopy, atomic force microscopy, and electrochemical impedance spectroscopy measurements combined with classical molecular dynamics simulations. A lower negative potential was shown to result in the formation of a well-oriented layer with the positive imidazolium ring of EMIMCl lying perpendicular to the electrode and the hydrophobic alkyl chain extending into the bulk electrolyte. This oriented layer, which formed from a dilute concentration of EMIMCl added to the electrolyte, was demonstrated to facilitate desolvation of incoming solvated Pb2+ cations and decrease the charge transfer resistance for Pb electrodeposition, which has important implications for the selective removal of Pb from contaminated mixtures. Overall, our findings open up new opportunities to modulate ion desolvation using hydrophobic ionic liquids in aqueous electrolytes for efficient heavy-metal separation.

12.
ACS Appl Mater Interfaces ; 15(32): 38878-38887, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534699

RESUMO

Constructing elastic electrodes with high mechanical and electrochemical stability remains a challenge in developing flexible supercapacitors. Instability of elastic composite electrodes stems from detachment of noncovalently associated electroactive components from elastic substrates under cyclic deformations. Herein, a novel all-organic copolymer consisting of polypyrrole grafted from a polyacrylate elastomer is proposed as elastic electrodes for stretchable supercapacitors. The single copolymer is obtained by graft polymerization in the swollen state, characterized by a wrinkled polypyrrole coating covalently attached on an elastic core. The copolymer is intrinsically elastic and maintains structural integrity under bending, twisting, and stretching deformations to ensure stable electrochemical performance. In addition, the grafted polypyrrole aggregates densely under the constraint of the backbone and gives a competitive conductivity of 41.6 S cm-1. A stretchable supercapacitor is constructed using the copolymer as electrodes and an acid hydrogel as an electrolyte, resulting in a specific capacitance of 430 mF cm-2. The supercapacitor delivers a capacitance retention of 100% after 1000 stretching-releasing cycles, exhibiting mechanical and electrochemical reliability under elastic deformations.

13.
Org Biomol Chem ; 21(33): 6783-6788, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565619

RESUMO

Salicylic acid (SA) is a key hormone that regulates plant growth and immunity, and understanding the physiologic processes induced by SA enables the development of highly pathogen-resistant crops. Here, we report the synthesis of three new SA-sensors (R1-R3) from hydroxyphenol derivatives of a rhodamine-acylhydrazone scaffold and their characterization by NMR and HRMS. Spectroscopic analyses revealed that structural variations in R1-R3 resulted in sensors with different sensitivities for SA. Sensor R2 (with the 3-hydroxyphenyl modification) outperformed R1 (2-hydroxyphenyl) and R3 (4-hydroxyphenyl). The SA-detection limit of R2 is 0.9 µM with an ultra-fast response time (<60 s). In addition, their plant imaging indicated that designed sensor R2 is useful for the further study of SA biology and the discovery and development of new inducers of plant immunity.


Assuntos
Células Vegetais , Ácido Salicílico , Rodaminas/química , Ácido Salicílico/análise , Ácido Salicílico/química , Células Vegetais/química , Corantes , Plantas
14.
Int J Neural Syst ; 33(8): 2350043, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37420338

RESUMO

Radiation therapy is a fundamental cancer treatment in the clinic. However, to satisfy the clinical requirements, radiologists have to iteratively adjust the radiotherapy plan based on experience, causing it extremely subjective and time-consuming to obtain a clinically acceptable plan. To this end, we introduce a transformer-embedded multi-task dose prediction (TransMTDP) network to automatically predict the dose distribution in radiotherapy. Specifically, to achieve more stable and accurate dose predictions, three highly correlated tasks are included in our TransMTDP network, i.e. a main dose prediction task to provide each pixel with a fine-grained dose value, an auxiliary isodose lines prediction task to produce coarse-grained dose ranges, and an auxiliary gradient prediction task to learn subtle gradient information such as radiation patterns and edges in the dose maps. The three correlated tasks are integrated through a shared encoder, following the multi-task learning strategy. To strengthen the connection of the output layers for different tasks, we further use two additional constraints, i.e. isodose consistency loss and gradient consistency loss, to reinforce the match between the dose distribution features generated by the auxiliary tasks and the main task. Additionally, considering many organs in the human body are symmetrical and the dose maps present abundant global features, we embed the transformer into our framework to capture the long-range dependencies of the dose maps. Evaluated on an in-house rectum cancer dataset and a public head and neck cancer dataset, our method gains superior performance compared with the state-of-the-art ones. Code is available at https://github.com/luuuwen/TransMTDP.


Assuntos
Aprendizagem , Humanos
15.
Res Sq ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461519

RESUMO

Nutrient handling is an essential function of the gastrointestinal tract. Most nutrient absorption occurs in the small intestine and is coordinated by hormone-producing intestinal epithelial cells known as enteroendocrine cells (EECs)1. In contrast, the colon mostly reclaims water and electrolytes, and handles the influx of microbially-derived metabolites, including short chain fatty acids (SCFA)2-4. Hormonal responses of small intestinal EECs have been extensively studied but much less in known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. We found that colonic EEC deficiency leads to hyperphagia and obesity. Surprisingly, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment and transfer to germ free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we found that differential glutamate production by intestinal microbiota corresponds to increase appetite due to EEC loss. Finally, we show that colonic glutamate administration can directly increase food intake and activate appetite centers in the central nervous system. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.

16.
Adv Sci (Weinh) ; 10(23): e2302342, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37289105

RESUMO

Design of hydrogels with superior flexible deformability, anti-fracture toughness, and reliable environment adaption is fundamentally and practically important for diverse hydrogel-based flexible devices. However, these features can hardly be compatible even in elaborately designed hydrogels. Herein soft hydrogel networks with superior anti-fracture and deformability are proposed, which show good adaption to extremely harsh saline or alkaline environments. The hydrogel network is one-step constructed via hydrophobic homogenous cross-linking of poly (sodium acrylate), which is expected to provide hydrophobic associations and homogeneous cross-linking for energy dissipation. The obtained hydrogels are quite soft and deformable (tensile modulus: ≈20 kPa, stretchability: 3700%), but show excellent anti-fracture toughness (10.6 kJ m-2 ). The energy dissipation mechanism can be further intensified under saline or alkaline environments. The mechanical performance of the hydrophobic cross-linking topology is inspired rather than weakened by extremely saline or alkaline environments (stretchability: 3900% and 5100%, toughness: 16.1 and 17.1 kJ m-2 under saturated NaCl and 6 mol L-1 NaOH environments, respectively). The hydrogel network also shows good performance in reversible deformations, ion conductivity, sensing strain, monitoring human motions, and freezing resistance under high-saline environments. The hydrogel network show unique mechanical performance and robust environment adaption, which is quite promising for diverse applications.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37027720

RESUMO

The paper presents emotional voice puppetry, an audio-based facial animation approach to portray characters with vivid emotional changes. The lips motion and the surrounding facial areas are controlled by the contents of the audio, and the facial dynamics are established by category of the emotion and the intensity. Our approach is exclusive because it takes account of perceptual validity and geometry instead of pure geometric processes. Another highlight of our approach is the generalizability to multiple characters. The findings showed that training new secondary characters when the rig parameters are categorized as eye, eyebrows, nose, mouth, and signature wrinkles is significant in achieving better generalization results compared to joint training. User studies demonstrate the effectiveness of our approach both qualitatively and quantitatively. Our approach can be applicable in AR/VR and 3DUI, namely, virtual reality avatars/self-avatars, teleconferencing and in-game dialogue.

18.
Environ Toxicol Pharmacol ; 100: 104117, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37019323

RESUMO

Previous studies examining the functions of cyclin-dependent kinases (CDKs) have mainly focused on the regulation of the cell cycle. Recent studies have found that cyclin-dependent kinase 7 (CDK7) and cyclin-dependent kinase 9 (CDK9) play important roles in cell stress, metabolism of toxic substances and maintaining the stability of the internal environment. Here, we found that under stress conditions, the transcription and protein expression of AccCDK7 and AccCDK9 were induced to varying degrees. Meanwhile, the silencing of AccCDK7 and AccCDK9 also affected the expression of antioxidant genes and the activity of antioxidant enzymes, and reduced the survival rate of bees under high temperature stress. Furthermore, the exogenous overexpression of AccCDK7 and AccCDK9 improved the viability of yeast under stress conditions. Therefore, AccCDK7 and AccCDK9 may play roles in A.cerana cerana resistance to oxidative stress caused by external stimuli, potentially revealing a new mechanism of the honeybee response to oxidative stress.


Assuntos
Antioxidantes , Estresse Oxidativo , Abelhas/genética , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
19.
Bioorg Chem ; 134: 106467, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933337

RESUMO

Ginsenosides are a promising group of secondary metabolites for developing anti-inflammatory agents. In this study, Michael acceptor was fused into the aglycone A-ring of protopanoxadiol (PPD)-type ginsenosides (MAAG), the main pharmacophore of ginseng, and its liver metabolites to produce novel derivatives and assess their anti-inflammatory activity in vitro. The structure-activity relationship of MAAG derivatives was assessed based on their NO-inhibition activities. Of these, a 4-nitrobenzylidene derivative of PPD (2a) was the most effective and dose-dependently inhibited the release of proinflammatory cytokines. Further studies indicated that 2a-induced downregulation on lipopolysaccharide (LPS)-induced iNOS protein expression and cytokine release may be related to its inhibitory effect on MAPK and NF-κB signaling pathways. Importantly, 2a almost completely inhibited LPS-induced production of mitochondrial reactive oxygen species (mtROS) and LPS-induced NLRP3 upregulation. This inhibition was higher than that by hydrocortisone sodium succinate, a glucocorticoid drug. Overall, the fusion of Michael acceptors into the aglycone of ginsenosides greatly enhanced the anti-inflammatory activities of the derivatives, and 2a alleviated inflammation considerably. These findings could be attributed to the inhibition of LPS-induced mtROS to block abnormal activation of the NLRP3 pathway.


Assuntos
Ginsenosídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ginsenosídeos/farmacologia , Ginsenosídeos/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Transdução de Sinais , Citocinas/metabolismo
20.
Pestic Biochem Physiol ; 191: 105377, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963945

RESUMO

Insect cytochrome P450 monooxygenases (P450s or CYPs) perform important functions in the metabolic detoxification of both endogenous and exogenous substrates. However, the mechanism of action of the P450 genes in bees is unclear. In this study, we investigated the effects of AccCYP6k1 on the metabolism and detoxification of Apis cerana cerana. Spatiotemporal expression profiling revealed that the expression of AccCYP6k1 was the highest in foragers (A15) and was mainly expressed in the leg, midgut and head. RT-qPCR results showed that AccCYP6k1 exhibited different expression patterns following exposure to xenobiotics. In addition, silencing AccCYP6k1 increased the pesticides sensitivity and affected the detoxification system and antioxidant process of A. cerana cerana. In brief, the induced expression of AccCYP6k1 is related to the resistance of A. cerana cerana, while knockdown AccCYP6k1 affect the pesticides resistance and metabolic detoxification system of A. cerana cerana. These findings not only support the theoretical basis of metabolic detoxification in bees but also provide a better understanding of P450-mediated resistance to pesticides in insects.


Assuntos
Antioxidantes , Praguicidas , Abelhas/genética , Animais , Interferência de RNA , Estresse Oxidativo/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...